
 

  

  
Senior Design Project 
Musync 
  
 
Analysis Report 
  
Ahmet Çandıroğlu, Anıl Erken, Berk Mandıracıoğlu, Halil İbrahim Azak 

  

Supervisor: ​​Asst. Prof. Dr. M. Mustafa Özdal 
Jury Members:​​ Assoc. Prof. Dr. Özcan Öztürk, Prof. Dr. Cevdet Aykanat 

  

  

  

  
Analysis Report Nov 12, 2018 

  

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the 
requirements of the Senior Design Project course CS491/2. 

1 



1. Introduction 3 

2. Proposed system 3 
2.1 Overview 3 
2.2 Functional Requirements 4 

Place Owner Specific Requirements 4 
Visitor Specific Requirements 5 
General Requirements 6 

2.3 Nonfunctional Requirements 6 
2.4 Pseudo requirements 8 
2.5 System models 8 

2.5.1 Scenarios 8 
2.5.1.1 User Registration 8 
2.5.1.2 User Login 9 
2.5.1.3 User Login with Spotify 9 
2.5.1.4 User Connects Spotify Account 10 
2.5.1.5 User Disconnects Spotify Account 10 
2.5.1.6 User Connects to Place 11 
2.5.1.7 User Requests Song 11 
2.5.1.8 User Bids on Next Songs 12 
2.5.1.9 User Creates New Place 12 
2.5.1.10 User Connects Place to Spotify 13 
2.5.1.11 User Disconnects Spotify from a Place 13 
2.5.1.12 User Searches Places 14 
2.5.1.13 User Starts a new Shared Playlist 14 

2.5.2 Use case model 15 
2.5.3 Object and class model 16 
2.5.4 Dynamic models 20 

2.5.4.1 Sequence Models 20 
2.5.4.1.1 User Registration and Spotify Connection 20 
2.5.4.1.2 Next Songs Panel and Bidding On a Song 21 
2.5.4.1.3 Song Request Panel and Requesting a Song 22 
2.5.4.1.4 User Login 23 
2.5.4.1.5 User Login with Spotify 24 
2.5.4.1.6 User Connects to a Place 25 
2.5.4.1.6 User Creates a New Place 26 

2.5.4.2 Activity Diagram 27 
2.5.5 User interface - navigational paths and screen mock-ups 27 

3. References 33 

2 



1. Introduction 

Music is a common interest that many people enjoy and rest their souls. It may become 

a cumbersome procedure to find music that many people enjoy. In our daily lives, we 

are surrounded with music by means of our environment such as restaurants, cafes, 

bars, etc. Therefore, it is even more important to create a suitable playlist to satisfy 

majority based on their collective music taste. However, majority can not be satisfied 

every time, hence it is also necessary to recommend new places that users might enjoy 

the general music taste and even discover new songs.  

Musync aims to facilitate creation of playlists that are dynamically modified by both 

analysing the music tastes of users and their feedback on the current playlist. Musync is 

basically a digital jukebox which collects data about their music tastes from its current 

users and initialises a playlist. Moreover, users are able to add songs to the playlist and 

manipulate currently played songs by the power of bidding. Users have different values 

in our system, thus not every user has the same bidding power. Users that are regular 

customers of the place have more power in the creation of the playlist in that place.  

In this report, first we will provide a description of the system we propose. After that, 

requirements of it will be examined under relative sections, like functional requirements. 

Then, we will provide scenarios and use cases for the system. After those, object and 

class model, dynamic models and finally user interface information will be provided in 

respective order. 

2. Proposed system 

2.1 Overview 

The aim of Musync is enhancing the enjoyment of music in public areas such as 

restaurants, cafes, and bars. Achieving this requires owners of these areas to be able to 

3 



gather feedback from theirs patrons constantly and control the playlist with frequent 

changes. This is a very cumbersome work from the perspectives of both owners and the 

patrons. The purpose of Musync is to automate most of this work and provide an easy 

to use service to enhance the music playing in public areas. 

Musync enhances the playlist by both gathering and analyzing music taste of patrons, 

and providing an easy way to contribute to the playlist for patrons. At first, Musync will 

require place owner to setup and configure the application the way they like. It will 

provide options to limit music to genres owner prefers to not disturb the theme of the 

place. Also this preferences will be used to guide users to places with the music that 

satisfies their taste. After the first configuration, starting the application will be as easy 

as a click of a mouse. Musync will handle the remaining part of work for place owners. 

Patrons of public places will be able to connect to the playlist of the place they are in 

easily after entering a 4 number pin with the help of geolocation. If a patron chooses to 

authenticate their Spotify account, their music preferences will be analysed and 

contribute to the playlist of the place. Musync also provides bidding system to control 

playlist, a funny and fair way to engage with the playlist. Patrons will be given an 

amount of points based on how frequently they visit the place. They will have two ways 

to engage with the playlist, either by adding a track of their to the playlist or bidding for 

the next track to be played. 

Musync will also be available for individuals to host their own shared playlist. It will be 

available for free for a limited time in a month. The time will be adjusted to allow people 

use it freely for their occasional gatherings like birthday parties. In case a user wants to 

use it more frequently, they will need to upgrade their account to a premium account 

public places will use. 

2.2 Functional Requirements  

Place Owner Specific Requirements 

4 



● Place owners​ have to create an account with an email and password. 

● Anyone with a Spotify account should be able to subscribe to our as place 

owner system. System should be able to support be two types of 

accounts: free trial and paid subscription. 

○ Free trial​ allows up to 5 days of usage in a month. This account 

type is suitable for individuals who want to use the application 

occasionally for their home parties etc.  

○ Paid subscription​ allows unlimited usage of our system. These 

users are mostly owners of a place(cafe, bar, restaurant, etc) who 

are willing to give their customers best music experience. 

● Owners should be able to limit song requests to specific genres. 

Visitor Specific Requirements 

● Visitors​ should be able to use the application without an account. A unique 

account will be created automatically on first use. 

● Visitors​ should be able to add new songs to the common playlist if it is suitable to 

genre set by the owner. 

● Visitors​ should be able to bid on 3 songs selected by Musync out of the playlist to 

play them next. The bidding is done with points earned by visiting the place. 

● Visitors​ should be able to add songs or bid without linking their Spotify account to 

use. 

● Visitors​ should be able to link their Spotify account to contribute to the common 

playlist. 

● Visitors​ should be able to earn points which can be used to add/bid for songs by 

being a regular customer of a place. 

● Visitors ​should earn their points with respect to time they are spending in the 

place.  

● Visitors ​should be able to earn extra point based on their visit frequency. For 

example, 5 visits in a month should earn more coins than 5 visits in a year. 

5 



● Visitors​ should be able to receive place recommendations according to their 

music tastes and location, and view them in a map. 

● Visitors​ should be able to view all places with their preferred genre and currently 

played song in a map.  

● Visitors​ should agree to share their GPS locations to our system in order to use 

it. 

● Visitors ​should select a place based on their GPS location and verify that they 

are in that place by entering a 4-digit code. 

● Visitors ​should be able to view a list of recommended places based on their 

Spotify activity,music taste, their GPS location and accuracy. 

● Visitors ​should be able to see the song they have added to playlist on top of the 

auto generated list. 

 

General Requirements 

● Musync should be able to gather user’s Spotify data by using Spotify Web API  

● Musync should be able offer and display new places to user by utilizing Google 

Maps API. 

● Musync should keep the login date of each ​visitor​ for each place and count them 

logged in for 5 hours 

● Musync should keep the log of recently played songs(up to 10) for each place in 

order to recommend new places to visitors. 

● Place owners ​should be able to host from both the computer or the phone 

2.3 Nonfunctional Requirements 

2.3.1 Usability 

● The user interface should be simple and user-friendly. 

● The users should have no difficulty to start using the system. 

6 



● The users should be able to use the system without any login procedures, if 

they wish. 

2.3.2 Supportability 

● The system should be able to work in any web browser. 

● The system should be compatible with third party APIs such as Google Maps and 

Spotify. 

2.3.3 Reliability 

● System should be able to create joint playlists that will satisfy the majority, 

independent of the number of concurrent users. 

2.3.4 Efficiency 

● The delay between a user requesting a song and it being added to the playlist 

should not exceed 10 seconds. 

● Backend response time of the website (the time starting when an HTTP request 

taken and ending when the server starts to send frontend data) should not 

exceed 200 milliseconds. 

● The joint playlist should be created in a reasonable time and space complexity. 

2.3.5 Security 

● Information gathered from users and authentication related tokens should be 

stored securely. 

2.3.6 Scalability 

● The service provided to each place and its customers should not be affected by 

the amount of places and active users. 

● System should be able to handle multiple song requests coming from different 

users simultaneously. 

7 



2.3.7 Extensibility 

● The system should be able to include new features without difficulties. 

 

2.4 Pseudo requirements 

● Application must run on every popular browser properly. 

● Development of the system must be completed before CS Fair 2019. 

 

2.5 System models 

2.5.1 Scenarios 

2.5.1.1 User Registration 
Actors: User 

Entry Conditions: 

● User opens registration page. 

● User doesn’t have another account logged in. 

Exit Conditions: 

● User successfully registers OR 

● User cancels registration. 

Main Flow of Events: 

● User enters information 

● User chooses a password 

● User clicks to submit button 

8 



2.5.1.2 User Login 
Actors: User 

Entry Conditions: 

● User opens login page. 

● User doesn’t have another account logged in. 

Exit Conditions: 

● User successfully logins OR 

● User cancels login 

Main Flow of Events: 

● User enters login information. 

● User clicks login button. 

2.5.1.3 User Login with Spotify 
Actors: User 

Entry Conditions: 

● User opens login page. 

● User doesn’t have another account logged in. 

Exit Conditions: 

● User successfully logins through Spotify OR 

● User cancels login. 

Main Flow of Events: 

● User clicks to Login with Spotify button. 

● Application redirects user to Spotify. 

● User authorizes Musync. 

● Application redirects user to home page. 

9 



2.5.1.4 User Connects Spotify Account 
Actors: User 

Entry Conditions: 

● User is logged in. 

● User opens profile page. 

Exit Conditions: 

● User successfully connects Spotify account OR 

● User cancels Spotify connection. 

Main Flow of Events: 

● User clicks on Login with Spotify button. 

● Application redirects user to Spotify. 

● User authorizes Musync. 

● Application redirects user to profile page. 

2.5.1.5 User Disconnects Spotify Account 
Actors: User 

Entry Conditions: 

● User is logged in. 

● User opens settings page. 

● User has Spotify account connected. 

Exit Conditions: 

● User successfully disconnects Spotify account OR 

● User cancels disconnecting Spotify. 

Main Flow of Events: 

● User clicks to Disconnect Spotify button. 

● Application asks User if she/he is sure. 

10 



● User chooses an option. 

2.5.1.6 User Connects to Place 
Actors: User 

Entry Conditions: 

● User opens home page. 

● User allows application to use Location data. 

Exit Conditions: 

● User successfully connects to place OR 

● User cancels connection. 

Main Flow of Events: 

● Application shows possible places based on location. 

● User chooses a place. 

● User enters a place specific 4-number pin. 

2.5.1.7 User Requests Song 
Actors: User 

Entry Conditions: 

● User is logged in. 

● User is connected to a place. 

Exit Conditions: 

● User adds a song to the playlist OR 

● User cancels request. 

Main Flow of Events: 

● User clicks on Add Song button on homepage. 

● User searches for a song in Song Search Screen. 

● User selects the song. 

11 



2.5.1.8 User Bids on Next Songs 
Actors: User 

Entry Conditions: 

● User is connected to a place. 

Exit Conditions: 

● User successfully bids on a song OR 

● User cancels bidding. 

Main Flow of Events: 

● User chooses a song. 

● User enters the amount of points she/he wants to bid. 

● Application warns user if there isn’t available amount of points. 

2.5.1.9 User Creates New Place 
Actors: User 

Entry Conditions: 

● User is logged in with a registered account. 

● User opens Create Place page. 

Exit Conditions: 

● User successfully creates a new place OR 

● User cancels creating a new place. 

Main Flow of Events: 

● User enters place information. 

● User chooses place location on map. 

● User chooses whether the place will be a permanent place or not. 

● Application warns user if he doesn’t have premium account and tries to create a 

permanent place. 

12 



2.5.1.10 User Connects Place to Spotify  
Actors: User 

Entry Conditions: 

● User is logged in. 

● User has a place created. 

● User opens settings page. 

Exit Conditions: 

● User successfully connects place to Spotify OR 

● User cancels Spotify connection. 

Main Flow of Events: 

● User chooses his/her place to connect. 

● User clicks Connect Place to Spotify button. 

● Application redirects user to Spotify. 

● User authorizes Musync. 

2.5.1.11 User Disconnects Spotify from a Place  
Actors: User 

Entry Conditions: 

● User is logged in. 

● User has a place connected to Spotify. 

● User opens settings page. 

Exit Conditions: 

● User successfully disconnects the place from Spotify. 

● User cancels disconnection. 

Main Flow of Events: 

● User chooses his/her place to disconnect from Spotify. 

● Application asks user if she/he is sure. 

13 



● User chooses an option. 

2.5.1.12 User Searches Places 
Actors: User 

Entry Conditions: 

● User is logged in. 

Exit Conditions: 

● User clicks on home button. 

Main Flow of Events: 

● User clicks on search places button on Home screen. 

● User searches for places and view them as list or on map. 

2.5.1.13 User Starts a new Shared Playlist  
Actors: User 

Entry Conditions: 

● User has an active Spotify account. 

● User is logged in as ​place owner 

Exit Conditions: 

● Place owner started the system and initial playlist is auto generated 

Main Flow of Events: 

● Place owner​ logins to system through the desktop client or the browser client  

● Place owner ​configures the set of music genres to play in the place. 

● Place owner ​starts to host the system. 

● Visitor​ goes to Musync browser client url. 

● Musync checks the cookies of the visitor 

○ If they don’t have account a new account is created automatically 

○ If they have an account they login automatically 

14 



○ If the user has linked their Spotify account, Musync gathers relevant music 

to the genre of the place and the current playlist and adds it to playlist. 

2.5.2 Use case model  

 
Figure 1: Use case model 

  

15 



2.5.3 Object and class model 

Figure 2: Model classes 

16 



 

Figure 3: Controller classes 

MainController 

This controller class is main controller class of the application. It is responsible for 

storing and providing access to other controller classes. It also stores shared model 

class instances such as Song and Genre instances. 

SpotifyController 

SpotifyController class provides methods for Spotify API related operations. 

UserController 

This controller class is responsible for storing User classes and operations involving 

them. For example checking if a user exists and creating a new user will be done 

through this class. 

PlaceController 

17 



PlaceController is responsible for storing Place classes and operations involving them. 

Creating and controlling places will be done through this class. 

LocationController 

This class will store and control locations. Operations related to locations, such as 

finding nearby locations, will be done through this class. 

User 

This class is the base class of all user types. It has the basic attributes such as 

password, id, location, last login date informations. Moreover, User has the points 

attribute in order to enable the visitor to bid on music. User has visited places and 

requested songs attributes in order to keep track of the visitor activity and increase 

points if the visitor is a regular visitor of the place. Aforementioned attributes serve as 

necessary data to make place recommendations to the user.  

RegisteredUser 

This class inherits User class. Users that registered through either email or Spotify will 

be a registered user. Registered users will be able to create and control places. To 

allow this functionality, RegisteredUser stores user information such as email and 

Spotify auth token, and place related information such as owned places and premium 

account information. 

Place 

Place class is the base class for place related classes. It holds the basic information 

such as location, Spotify token, pin and song bid information. This class also holds the 

playlist currently playing in the place. 

PermanentPlace 

PermanentPlace inherits Place class. The difference between the two classes is that 

permanent places corresponds to public places that will be used frequently and will 

18 



have a history of songs played. PermanentPlace holds genres allowed in place and 

requested songs. 

VisitedPlace 

VisitedPlace serves as the data for keeping track of visitor - place interaction. 

VisitedPlace enables musync to check if a user is a regular visitor of the place and 

increase their points accordingly. Moreover, Musync should be able to make 

recommendations based on the previously visited places of the visitors which can be 

learned from VisitedPlace class. 

Genre 

This class is utilized in PermanentPlace class which enables to limit a place’s allowed 

genres to play. Moreover, this class is used by Song to keep the list of genres a song 

belongs. 

Song 

This class is used to represent songs. It stores id, name, duration and genre of the 

song. 

RequestedSong 

This class is used to represent requested songs in a place. It stores the song instance, 

the user who requested it, the date and the place. This information will be used to reach 

the songs a user requests, so that her/his music taste will be understood and place 

recommendations will be made accordingly. 

Playlist 

Playlist has an id and a song array. Playlists are used inside Place classes to represent 

joint playlist of the place. 

Location 

19 



Location is used by the User and Place classes to determine where they are placed on 

a map. Therefore, this class enables to verify if the user is in fact in a place and their 

locations overlap. Moreover, this class is used by the PlaceController to make relevant 

place recommendations to the users. 

2.5.4 Dynamic models 

2.5.4.1 Sequence Models 

2.5.4.1.1 User Registration and Spotify Connection 

 
Figure 4: User registration and spotify connection 

This sequence diagram explains new registration followed by connecting Spotify 

account. User will start to process by visiting the registration page that is controlled by 

RegistrationView​. After user enters required information and submits it, it will be send to 

RegistrationController​. This controller will check if the information is valid and after that 

20 



will send it to ​AccountModel​. ​AccountModel ​controls the user data. It will add user if it 

can and return error information if it cannot, in situations such as account information 

that needs to be unique already existing in database. After that, ​RegistrationController 

will notify view about the result and ​RegistrationView ​will inform the user. 

After user registers a new account, she/he will be redirected to profile page controlled 

by ​ProfileView​. In this page user can choose to connect Spotify account. If she/he does 

so, it will be checked first that if an existing connection exists through ​AccountController 

and ​AccountModel​. After that ​ProfileView ​will redirect user to ​SpotifyController ​that will 

control the acquiring of Spotify authentication. If the authentication is succesfull, 

ProfileView ​will send authentication information to ​AccountController​. ​AccountController 

will return result after sending information to ​AccountModel ​and getting result. Finally 

ProfileView ​will show result to user. 

2.5.4.1.2 Next Songs Panel and Bidding On a Song 

 
Figure 5: Next songs panel and bidding on a song 

21 



This sequence diagram explains how users will be able to bid on next songs. Users will 

be able to see a bidding panel on Home page if they are logged in and connected to a 

place. After user clicks on bidding panel button, ​UserHomeView ​will fetch next 3 songs 

on the playlist through ​PlaceController​. The controller will get this data through 

PlaylistModel​. ​UserHomeView ​will also fetch user points through ​AccountController 

which will fetch data through ​AccountModel​. Then ​UserHomeView ​will show bidding 

panel consisting of this data. 

When a user wants to bid on a song, ​UserHomeView ​will send this request to 

PlaceController​. This controller will remove the points first through ​AccountController 

and ​AccountModel​. If it is successfull, it will add points to the song through 

PlaylistModel ​and return result of the operation. Finally ​UserHomeView ​will notify user 

with the result. 

2.5.4.1.3 Song Request Panel and Requesting a Song 

 
Figure 6: Song request panel and requesting a song 

22 



This sequence diagram explains how users will be able to request a song. Like bidding 

panel, request panel will be shown on Home page. ​UserHomeView ​will only fetch user 

points. If user has enough points, she/he will be able to search for songs to add to the 

playlist. ​UserHomeView ​will send search term to ​ApiController​. ​ApiController ​will fetch 

results from ​SpotifyApi​. The results will be return back to ​ApiController ​and 

UserHomeView ​in order. 

After user finds a song to add and clicks to request button, ​UserHomeView ​will redirect 

this request to ​PlaceController​. This controller will remove required points through 

AccountController ​and ​AccountModel ​first. If it is successfull, the song will first be added 

to our database through ​PlaylistModel​. After that song will be added to Spotify playlist 

through ​ApiController ​and ​SpotifyApi​. The result of the operation will be shown to the 

user. 

2.5.4.1.4 User Login 

 

Figure 7: User login 

This sequence diagram explains how users will be able to login to system. User will 

enter the login credentials on login page. After that, credentials are sent to 

LoginController​. There, credentials will be checked to see if they are valid. If they are 

valid, data is sent to ​AccountModel ​to check if such user exists. Based on the output, a 

message is returned to user and she is redirected to homepage if login is successful. 

 

23 



2.5.4.1.5 User Login with Spotify 

 

Figure 8: User login with Spotify 

This sequence diagram explains how user will be able to login with her/his Spotify 

account. User will select Spotify login option on login panel and this request will be sent 

to ​LoginController​. This controller will request Spotify login from ​SpotifyController ​which 

will connect user to Spotify and will return the authentication info after user logins to 

Spotify. Authentication info is sent to ​AccountModel ​to realize the login in our system. 

After that, a message is returned to user and redirection to homepage is done if login is 

successful. 

24 



2.5.4.1.6 User Connects to a Place 

 
Figure 9: User connects to a place 

This diagram explains how user can connect to a place to contribute to playlist and 

request songs. When user enters place connection page, ​LocationController ​finds the 

possible places based on user’s location, and sends the list of possible places to 

PlaceConnectionView. ​There, place list is displayed to user, and user selects the one 

she/he wants to connect and enters its 4-digit pin. This data is sent to ​PlaceController ​to 

check if the pin is correct. If pin is true, connection is established and a success 

message is returned to user.  

 

25 



2.5.4.1.6 User Creates a New Place 

 

Figure 10: User creates a new place 

This diagram explains the creation of a new place. User enters place information on 

place creation window. This information is sent to ​PlaceController​ which checks the 

validity of given info and creates a new ​Place​ instance if it is valid. Unique 4-digit pin of 

the new place is returned to user. 

 

26 



2.5.4.2 Activity Diagram 

 
Figure 11: Activity diagram 

This activity diagram shows the process of user adding a song to the playlist step by 

step. User can login with or without Spotify as they prefer. They have to validate their 

location by entering a 4-digit unique PIN code which are given by the place owner. After 

validation, user can click on Add Song button which would take user to the Song Search 

Screen. They can select the song they want and it would be added. 

2.5.5 User interface - navigational paths and screen mock-ups 

Our aim is to maximize the user experience and for this reason user interface will be as 

simple as it can be. Users will be able to use the application without having to manually 

27 



authenticate. There will be no login screen, users will be authenticated automatically 

whenever they open the webpage. Users can use their Spotify accounts to authenticate, 

If they want. 

 

Figure 12: Location detection screen 

 

Figure 13: Location validation screen 

Users will select their location and they will enter a PIN code to validate their location. 

The PIN code will be unique for each location and the place owner will let users to know 

their PIN code. 

28 



 

Figure 14: Home screen 

  

Figure 15: Song search screen 

Users will see currently playing song and play queue in the home screen. They can add 

a song to the queue by simply searching the song. Anyone can add a song to the 

playlist. There will be a bidding procedure to select the next song. Users will be able to 

use extra points if they want. 

29 



Figure 16: Bidding screen Figure 17: User profile screen 

 

 

30 



 

Figure 18: Desktop application login screen 

Place owners will have an option to use desktop application. The desktop application 

will require logging in. Also users will be able to connect their Spotify account through 

desktop application like they could connect through web application. 

31 



 

Figure 19: Desktop application home screen 

Place owners will be able control their shared playlist easily through desktop 

application. Since the playlist will be on Spotify, anything related to playlist itself can be 

done through Spotify like an individual would. Owners can see what the logs of playlist 

on home page of desktop application, share the numbers on their social media 

accounts, disable song requests temporarily if they want or customize various things 

like the bidding system.  

32 



3. References 

[1]​ Object-Oriented Software Engineering, Using UML, Patterns, and Java, 2nd Edition​, 
by Bernd Bruegge and Allen H. Dutoit, Prentice-Hall, 2004, ISBN: 0-13-047110-0. 
 

33 


